Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Formal Languages and Automata Theory

Time: 3 hrs.
Max. Marks:100
Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Mention the differences between DFA, NFA and \in-NFA.
(04 Marks)
b. Design DFA for following languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
(i) The set of all strings not containing the substring aab.
(ii) Set of strings with odd number of a's and odd number of b's.
(iii) Strings ending with abb.
(06 Marks)
c. Design an NFA accepting the set of all strings ending with ' 01 ' over $\Sigma=\{0,1\}$ and convert it to equivalent DFA by subset construction method.
(10 Marks)
2 a. Convert the following $\in-N F A$ to equivalent DFA.

(07 Marks)
b. Define regular expression and also write regular expressions for the following languages:
(i) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mid \mathrm{n} \geq 4\right.$ and $\left.\mathrm{m} \leq 3\right\}$
(ii) $\mathrm{L} \equiv\left\{\omega:|\omega| \bmod 3=0, \omega \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
(06 Marks)
c. Convert the Regular expression $\mathrm{a}^{*}+\mathrm{b}^{*} \mathrm{c}$ to $\in-\mathrm{NFA}$.
(03 Marks)
d. Obtain the regular expression for the following FA using state elimination technique:

Fig.Q2(d)
(04 Marks)
3 a. State and prove pumping lemma for regular languages.
(05 Marks)
b. Show that the language $\mathrm{L}=\left\{0^{\mathrm{n}}\left|0^{\mathrm{n}}\right| \mathrm{n} \geq 1\right\}$ is not regular using pumping lemma.
(03 Marks)
c. What are distinguishable and indistinguishable states? Minimize the following DFA using table filling algorithm.
(10 Marks)

δ	a	b
$\rightarrow \mathrm{A}$	B	E
B	C	F
$* \mathrm{C}$	D	H
D	E	H
E	F	I
$* \mathrm{~F}$	G	B
G	H	B
H	I	C
$* \mathrm{I}$	A	E

d. Consider the following two DFA's, M_{1} and M_{2}. Construct the product automation which simulates both M_{1} and M_{2} i.e. intersection. [Refer Fig.Q3(d)]

Fig.Q3(d)
(02 Marks)
4 a. Define a Context-Free Grammar (CFG) and also obtain CFG's for the following languages:
(i) $L=\left\{0^{i} 1^{j} \mid i \neq j, i \geq 0\right.$ and $\left.j \geq 0\right\}$
(ii) $\mathrm{L}=\left\{(011+1)^{\mathrm{m}}(01)^{\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 0\right\}$
(08 Marks)
b. What is an ambiguous grammar? Show that the following grammar is ambiguous.
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid$ a where E is the start symbol. Find the unambiguous grammar.
(08 Marks)
c. Discuss the applications of CFG.

PART - B

5 a. Give the formal definition of PDA. Design a PDA for the language $L=\left\{\omega \omega^{R} \mid \omega \in\{a, b\}^{*}\right\}$. Also, draw the transition diagram for the constructed PDA. Write the Instantaneous Description (ID) for the string "abbbba".
(12 Marks)
b. Convert the following CFG to PDA.

S \rightarrow aABB $\mid \mathrm{aAA}$
$\mathrm{A} \rightarrow \mathrm{aBB} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bBB} \mid \mathrm{A}$
$\mathrm{C} \rightarrow \mathrm{a}$
(08 Marks)
6 a. What are useless symbols? For the following grammar
$\mathrm{S} \rightarrow \mathrm{aAa}|\mathrm{bBb}| \in$
$\mathrm{A} \rightarrow \mathrm{C} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{C} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{CDE} \mid \in$
$\mathrm{D} \rightarrow \mathrm{A}|\mathrm{B}| \mathrm{ab}$
(i) Eliminate \in - productions.
(ii) Eliminate unit productions (if any)
(iii) Eliminate useless symbols (if any)
(10 Marks)

b. Define Chomsky normal form. Also, convert the following CFG to CNF.
$\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{a} a b$
$\mathrm{B} \rightarrow \mathrm{Ac}$
(06 Marks)
c. Prove that the context-free languages are closed under union.

7 a. Define a Turing machine.
(02 Marks)
b. Design a Turing machine to accept the following language: $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$. Also show the sequence of moves made by the TM for the string "aabb". Write the transition diagram.
(10 Marks)
c. Explain multi-tape Turing machine and compare the same with universal Turing machine.
(08 Marks)
8 Write short notes on:
a. Application of Regular Expressions
b. Universal Turing Machine
c. Post correspondence problem
d. Recursive language
(20 Marks)

